Nadie aprende si no se ha equivocado al intentarlo...

Home

CBC (U.B.A.)

Matemática

Física

Química

Biología

Links

Videos Educativos

 
 

Matemáticas


Aprender y enseñar matemática no es fácil. Lo sabe el frustrado alumno que se enfrenta, calculadora en mano, al despiadado ejercicio que no le sale; y lo sabe el profesor, cuya frustración crece exponencialmente, al ver que su alumno se estrella una y otra vez, con la misma dificultad sin poder superarla.

Esta es una problemática que no reconoce países, idiomas o fronteras...

¿Cómo superarlo?

Pregunta que no tendrá respuesta si de tu parte no hay dedición de trabajar. Soy profesora y no hago milagros. Si mentalmente te predispones a no entender, has perdido la pelea antes de comenzar.

Es un largo camino el que se debe transitar, parecido a una escalera ascendente, en la que no podemos saltar ningún escalón.

No hay recetas mágicas, sino mucho trabajo.


(Si utilizas Firefox puede que no veas correctamente las letras symbol)

Lógica proposicional

Autor: Andrés J. Bilstein


Introducción

El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de las denominadas frases u oraciones. Estas pueden tener diferentes significados pero siempre van a resumirse a las formas de verdaderas o falsas, siendo éste el precedente fundamental para el desarrollo humano. Lo importante en el presente estudio es el hecho de que, a partir de los enunciados y de acuerdo a su significado es posible establecer una proposición y a partir de un conjunto de éstas podemos llegar a una conclusión o inferencia, siendo la lógica la ciencia encargada del estudio de éstas.

Hoy en día, la lógica proposicional que estudiaremos en este capítulo, tiene una importancia singular dada su aplicación en los llamados "circuitos lógicos" de uso en la electrónica y la informática.

Proposición

La proposición es el significado de una idea, enunciado, conjunto de palabras o letras a las que se les puede asignar uno y sólo uno de los valores de verdad, que pueden ser:

VERDADERO (V) o FALSO (F)

En resumen, podemos dar la siguiente definición: Proposición es toda oración declarativa.

Por lo general, a las proposiciones se las representa por las letras del alfabeto desde la letra p, es decir, p, q, r, s, t, ... etc. Así, por ejemplo, podemos citar las siguientes proposiciones y su valor de verdad:

p : 15 + 5 = 21 (F)

q: Santa Fe es una provincia Argentina. (V)

r: El número 15 es divisible por 3. (V)

s: El perro es un ave. (F)

Expresiones No Proposicionales

Son aquellos enunciados a los que no se les puede asignar un valor de verdad. Entre ellos tenemos a los exclamativos, interrogativos o imperativos.

Así tenemos, por ejemplo:

– ¿Cómo te llamas?

–  Prohibido pasar

–  Borra el pizarrón.

Enunciados Abiertos

Si en la proposición: "cinco es mayor que tres" (en símbolos: 5 > 3) reemplazamos al número 5 por la letra x, se obtiene la expresión "x es mayor que tres" (x > 3), y si convenimos que x no represente necesariamente al número 5, sino a un número cualquiera, entonces al enunciado x > 3 se le denomina enunciado abierto.

Clasificación de las Proposiciones

Aquellas proposiciones que constan o se les puede representar por una sola variable, se llaman proposiciones simples o atómicas. Por ejemplo, sea la proposición "p: 3 + 6 = 9" es una proposición simple o atómica.

Cuando una proposición consta de dos o más enunciados simples, se le llama proposición compuesta o molecular. Así, por ejemplo:

encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra.

Notación y Conectivos Lógicos

A partir de proposiciones simples es posible generar otras, simples o compuestas. Es decir que se puede operar con proposiciones, y para ello se utilizan ciertos símbolos llamados conectivos lógicos. A continuación vemos una concreta definición de cada uno:

 

Símbolo

Operación asociada

Significado

~

Ù

Ú

Þ

Û

Ú

Negación

Conjunción o producto lógico

Disyunción o suma lógica

Implicación

Doble implicación

Diferencia simétrica

no p o no es cierto que p

p y q

p o q (en sentido incluyente)

p implica q, o si p entonces q

p si y sólo si q

p o q (en sentido excluyente)

Operaciones Proposicionales

Definiremos las operaciones entre proposiciones en el sentido siguiente: dadas dos o más proposiciones, de las que se conoce los valores veritativos, se trata de caracterizar la proposición resultante a través de su valor de verdad. A tal efecto, estudiaremos a continuación el uso y significado de los diferentes conectivos lógicos mencionados arriba:

Negación

Dada una proposición p, se denomina la negación de p a otra proposición denotada por ~ p (se lee "no p") que le asigna el valor veritativo opuesto al de p. Por ejemplo:

p: Diego estudia matemática  

~ p: Diego no estudia matemática

Por lo que nos resulta sencillo construir su tabla de verdad:

p

~ p

V

F

F

V

Observamos aquí que al valor V de p, la negación le hace corresponder el valor F, y viceversa.

Se trata de una operación unitaria, pues a partir de una proposición se obtiene otra, que es su negación.

Ejemplo: La negación de " p: todos los alumnos estudian matemática" es                 

~ p: no todos los alumnos estudian matemática

o bien:          

~ p: no es cierto que todos los alumnos estudian matemática

~ p: hay alumnos que no estudian matemática

Conjunción

Dadas dos proposiciones p y q, se denomina conjunción de estas proposiciones a la proposición p Ù q (se lee "p y q"), cuya tabla de verdad es:

p

q

p Ù q

V

V

F

F

V

F

V

F

V

F

F

F

La tabla que define esta operación, establece que la conjunción es verdadera sólo si lo son las dos proposiciones componentes. En todo otro caso, es falsa.

Ejemplo: Sea la declaración: i) 

Vemos que está compuesta de dos proposiciones a las que llamaremos p y q, que son

p: 5 es un número impar

q: 6 es un número par

Por ser ambas verdaderas, la conjunción de ellas (que no es sino la declaración i) es verdadera.

Ahora bien, sea la declaración

ii) Hoy es el día 3 de noviembre y mañana es el día de 5 de noviembre

Esta conjunción es falsa, ya que no pueden ser simultáneamente verdaderas ambas proposiciones.

Disyunción

Dadas dos proposiciones p y q, la disyunción de las proposiciones p y q es la proposición p Ú q cuya tabla de valor de verdad es:

p

q

p Ú q

V

V

F

F

V

F

V

F

V

V

V

F

La disyunción o es utilizada en sentido excluyente, ya que la verdad de la disyunción se da en el caso de que al menos una de las proposiciones sea verdadera. En el lenguaje ordinario la palabra o es utilizada en sentido incluyente o excluyente indistintamente. Para agotar toda posibilidad de ambigüedades, en matemática se utiliza la disyunción definida por la tabla precedente, que nos muestra que la disyunción sólo es falsa cuando ambas proposiciones son falsas.

Ejemplo: Sea  i)  Tiro las cosas viejas o que no me sirven

El sentido de la disyunción compuesta por p y q (p: tiro las cosas viejas, q: tiro las cosas que no me sirven) es incluyente, pues si tiro algo viejo, y que además no me sirve, la disyunción es V.

Implicación o Condicional

Implicación de las proposiciones p y q es la proposición p Þ q (si p entonces q) cuya tabla de valores de verdad es:

p

q

p Þ q

V

V

F

F

V

F

V

F

V

F

V

V

La proposición p se llama antecedente, y la proposición q se llama consecuente de la implicación o condicional. La tabla nos muestra que la implicación sólo es falsa si el antecedente es verdadero y el consecuente es falso.

Ejemplo: Supongamos la implicación 

La implicación está compuesta de las proposiciones

p: apruebo

q: te presto el libro

Nos interesa conocer la verdad o falsedad de la implicación i), en relación a la verdad o falsedad de las proposiciones p y q. El enunciado puede pensarse como un compromiso, condicionado por p, y podemos asociar su verdad al cumplimiento del compromiso. Es evidente que si p es F, es decir si no apruebo el examen, quedo liberado del compromiso y preste o no el apunte la implicación es verdadera.

Si p es verdadera, es decir si apruebo el examen, y no presto el libro, el compromiso no se cumple y la proposición i) es falsa. Si p y q son verdaderas, entonces la proposición i) es verdadera pues el compromiso se cumple.

Ejemplo: 1 = –1 Þ 1² = (–1)² (F)

La proposición resulta ser falsa por ser el antecedente (1 = –1) falso.

Doble Implicación o Bicondicional

Doble implicación de las proposiciones p y q es la proposición p Û q (se lee "p si y sólo si q") cuya tabla de valores de verdad es

p

q

p Û q

V

V

F

F

V

F

V

F

V

F

F

V

La doble implicación o bicondicional sólo es verdadera si ambas proposiciones tienen el mismo valor de verdad.

La doble implicación puede definirse como la conjunción de una implicación y su recíproca. De este modo, la tabla de valores de verdad de p Û q puede obtenerse mediante la tabla de (p Þ q) Ù (q Þ p), como vemos:

p

q

p Þ q

q Þ p

(p Þ q) Ù (q Þ p)

V

V

F

F

V

F

V

F

V

F

V

V

V

V

F

V

V

F

F

V

Ejemplo: Sea i) a = b si y sólo si a2 = b2

El enunciado está compuesto por las proposiciones:

p: a = b

q: a2 = b2

Esta doble implicación es falsa si p es F y q es V. En los demás casos es V.

Diferencia Simétrica

Diferencias simétrica o disyunción en sentido excluyente de las proposiciones p y q es la proposición p Ú q (se lee "p o q en sentido excluyente") cuya tabla de valores de verdad es:

p

q

p Ú q

V

V

F

F

V

F

V

F

F

V

V

F

La verdad de p Ú q está caracterizada por la verdad de una y sólo una de las proposiciones componentes.

Ejemplo: Sea i) o vamos a Córdoba o vamos a Mendoza

Queda claro que sólo podremos ir a uno de los dos lugares, y sólo a uno. Es decir que el enunciado i) es verdadero sólo si vamos a una de las dos ciudades. En caso de ir a ambas, o de no ir a ninguna, el enunciado es Falso.

Condición Necesaria y Suficiente

Consideremos la tabla de valores de verdad de la implicación

p

q

p Þ q

V

V

F

F

V

F

V

F

V

F

V

V

Hay tres casos en los que p Þ q es V, y entre ellos hay uno en que p es V, en el cual resulta q verdadera. Es evidente que hacemos referencia al primer renglón de la tabla y tenemos que si p Þ q es V y p es V, entonces q es V. Se dice entonces que el antecedente p es condición suficiente para el consecuente q.

En cambio, si p es F, nada podemos decir de q puesto que puede ser V o F. Por otra parte, cuando p Þ q es V, si q es V, entonces p puede ser V o F; mas para que p sea V se necesita que q lo sea. Se dice entonces que q es condición necesaria para p.

Estas condiciones suelen expresarse del siguiente modo:

q si p (condición suficiente)

p sólo si q (condición necesaria)

Ejemplo: La siguiente implicación es V: "Si T es equilátero, entonces T es isósceles"

En este caso:

p: T es equilátero

q: T es isósceles

y p es condición suficiente para q, es decir, que un triángulo sea equilátero es suficiente para asegurar que sea isósceles. Por otra parte, T es equilátero sólo si es isósceles; es decir que un triángulo sea isósceles es necesario para que sea equilátero.

Sea ahora la doble implicación p Û q, es decir (p Þ q) Ù (q Þ p). Si p Û q es V, entonces p Þ q es V y q Þ p es V. Se tiene, atendiendo a la primera, que p es condición suficiente para q y, teniendo en cuenta la segunda implicación, ocurre que p es condición necesaria para q.

Es decir, si p Û q es V, entonces el antecedente p es condición necesaria y suficiente para el consecuente q. Análogamente, en el caso de la doble implicación verdadera, el consecuente q es también condición necesaria y suficiente para el antecedente p.

Proposiciones lógicamente equivalentes

Dos proposiciones p y q se llaman equivalentes si sus tablas de verdad son idénticas. De ser así se denota: p º q

Ejemplo: Sea p: p Þ q, recordamos su tabla de verdad:

p

q

p Þ q

V

V

F

F

V

F

V

F

V

F

V

V

Ahora bien , si analizamos la proposición q: ~ p Ú q, su tabla de verdad resulta:

p

q

~ p Ú q

V

V

F

F

V

F

V

F

V

F

V

V

Como vemos, luego de realizar las tablas de valor veritativo encontramos que ambas proposiciones tienen el mismo resultado final. Con esto, decimos que ambas proposiciones son lógicamente equivalentes, y en este caso particular lo simbolizamos:

(p Þ q) º (~ p Ú q)

Tautología, contradicción y contingencia

Al conjunto de proposiciones, conectivos lógicos y símbolos de agrupación lo denominamos fórmula lógica. Por ejemplo: ~{ (p Þ q) Ù (s Ù t) }

Si al evaluar una fórmula lógica, resulta que todos los valores de verdad resultantes son siempre V para cualquier combinación de sus valores veritativos, decimos que dicha fórmula es una Tautología o Ley lógica.

Ejemplo: Si analizamos la proposición t: p Ú ~ p realizando su tabla de verdad:

p

~ p

p Ú ~ p

V

F

F

V

V

V

Vemos que para cualquier combinación de las proposiciones p y su negación ~ p, la proposición t: p Ú ~ p es siempre verdadera. Entonces, la proposición t es una tautología.

Ejemplo: Analicemos ahora la fórmula lógica { ( p Þ q ) Ù p } Þ q

p

q

p Þ q

q Þ p

{ ( p Þ q ) Ù p } Þ q

V

V

F

F

V

F

V

F

V

F

V

V

V

F

F

F

V

V

V

V

En este caso comprobamos también que independientemente de la combinación de valores de verdad de las proposiciones p y q, el resultado de la fórmula lógica es siempre V. Decimos, aquí también, que esta fórmula es una tautología o ley lógica.

Si al estudiar una fórmula lógica, a diferencia de los ejemplos anteriores resulta que para cualquier valor de verdad de las proposiciones intervinientes el resultado de dicha fórmula es siempre falso, decimos que dicha fórmula es una Contradicción.

Ejemplo: Analicemos la fórmula lógica p Ù ~ p

p

~ p

p Ù ~ p

V

F

F

V

F

F

Encontramos que la fórmula es siempre falsa, es entonces una Contradicción.

Si una proposición no es una tautología ni una contradicción (es decir que contiene al menos un valor V y otro F) es una contingencia.

Leyes del álgebra proposicional

Como bien dijimos arriba, aquellas fórmulas lógicas que resultan ser siempre verdaderas no importa la combinación de los valores veritativos de sus componentes, son tautologías o leyes lógicas. En el cálculo proposicional existen algunas tautologías especialmente útiles cuya demostración se reduce a la confección de su correspondiente tabla de verdad, a saber:

Involución

~ (~ p) Û p (se lee "no, no p, equivale a p")

Idempotencia

(p Ù ~ p) Û p

(p Ú ~ p) Û p

Conmutatividad

a) de la disyunción: p Ú q Û q Ú p

b) de la conjunción: p Ù q Û q Ù p

Asociatividad

a) de la disyunción: (p Ú q) Ú r Û p Ú (q Ú r)

b) de la conjunción: (p Ù q) Ù r Û p Ù (q Ù r)

Distributividad:

De la conjunción respecto de la disyunción: (p Ú q) Ù r Û (p Ù r) Ú (q Ù r)

De la disyunción respecto de la conjunción: (p Ù q) Ú r Û (p Ú r) Ú (q Ú r)

Leyes de De Morgan

~ ( p Ú q ) Û ~ p Ù ~ q

"La negación de una disyunción equivale a la conjunción de las negaciones"

~ ( p Ù q ) Û ~ p Ú ~ q

"La negación de una conjunción equivale a la disyunción de las negaciones"

Negación de una Implicación

Las proposiciones p Þ q y ~ (p Ù ~ q) son equivalentes, como vemos realizando la tabla de valores correspondientes:

p

q

p Þ q

(p Ù ~ q)

~(p Ù ~ q)

p Þ q Û ~(p Ù ~ q)

V

V

F

F

V

F

V

F

V

F

V

V

F

V

F

F

V

F

V

V

V

V

V

V

Con esto, comprobamos que la negación de la primera equivale a la negación de la segunda, es decir

~ (p Þ q) Û ~{ ~(p Ù ~ q)}, y podemos concluir entonces que: 

~ ( p Þ q ) Û ( p Ù ~ q)

Es decir, la negación de una implicación no es una implicación sino la conjunción del antecedente con la negación del consecuente.

Ejemplo: Sea la implicación p: hoy es viernes entonces mañana es domingo

Su negación es ~ p: hoy es viernes y mañana no es domingo.

Circuitos lógicos o booleanas

La verdad de una proposición puede asociarse al pasaje de corriente en un circuito eléctrico con un interruptor.

Así, para representar a p, si es F, se tiene: p

y para p, si es V, se tiene: p

Es decir, el interruptor se cierra si p es V y se abre si p es F.

Podemos, así, representar las operaciones proposicionales mediante circuitos con tantos interruptores como proposiciones componentes, combinados en serie o paralelamente.

Veremos, a continuación, como representar en forma booleana las operaciones que surgen de operar con dos proposiciones mediante los conectivos lógicos que conocemos.

Conjunción

Este circuito admite el pasaje de corriente, es decir la verdad de p Ù q, sólo si ambas son V (comprobar en la tabla de verdad de la conjunción).

Disyunción

Está representada por un circuito en paralelo.

Como vemos, admite el pasaje de corriente cuando al menos una de las dos es V (comprobar en la correspondiente tabla de verdad).

Implicación

Dado que la representación mediante circuitos booleanos sólo es posible en caso de la conjunción o disyunción, para todas las demás operaciones necesitamos convertirlas en combinación de éstas. Así, puesto que ( p Þ q ) Û ~ ( p Ù ~ q ), aplicando una ley de De Morgan y la doble negación, se tiene ( p Þ q ) Þ ( ~ p Ú q )

Es decir, convertimos la implicación en una disyunción para poder representarla mediante un circuito booleano. Tenemos, así:

Diferencia simétrica

Para poder representar la diferencia simétrica mediante un circuito booleano, necesitamos realizar algunas operaciones lógicas:

( p Ú q ) Û ~( p Û q ) Û ~{ ( p Þ q ) Ù ( q Þ p )} Û ~( p Þ q ) Ú ~( q Þ p ) Û

( p Ù ~ q ) Ú ( q Ù ~ p ) Û ( p Ú q ) Ù ( p Ú ~ p ) Ù ( ~ q Ú q ) Ù ( ~ q Ú ~ p ) Û

( p Ú q ) Ù ( ~ p Ú ~ q )

Así hemos convertido la diferencia simétrica en la conjunción de dos disyunciones.

Ejemplo: Dibujar el circuito booleano de la siguiente proposición: ( p Ú q ) Ù r

Funciones proposicionales y cuantificadores

Función Proposicional

Supongamos los enunciados abiertos: 

" x es la capital de Buenos Aires"

" y + 4 = 11"

Estos no tienen un valor veritativo. Pero si en el primero de ellos hacemos x = La Plata, tenemos:

"La Plata es la capital de Buenos Aires" (V)

Asimismo, si en el segundo hacemos x = 9, resulta:  9 + 4 = 11 (F)

Podemos, entonces, dar la siguiente definición: "Una función proposicional es un enunciado abierto de la forma P(x) que se convierte en una proposición cuando se le asigna un valor específico a la variable".

Ejemplos:

p(x) : 2x + 5 > 11 , si x = 4 \ 13 > 11 (Verdadero)

q(x) : 3x + 7 = 11 , si x = 5 \ 22 = 16 (Falso)

r(x) : 2x + 1 = 5 , si x = 2 \ 5 = 5 (Verdadero)

s(x) : x es un animal, si x = mesa se tendrá : mesa es un animal (Falso)

t(x) : x es un ave, si x = flamenco se tiene: el flamenco es un ave (Verdadero)

Cuantificadores

A partir de funciones proposicionales es posible obtener proposiciones generales mediante un proceso llamado de cuantificación. Asociados a la indeterminada x, introducimos los símbolos " x y $ x, llamados cuantificador universal y cuantificador existencial respectivamente. Las expresiones

Para todo x, se verifica p(x) se denota por " x : p(x)

Existe x, tal que se verifica p(x) se denota por $ x / p(x)

Corresponden a una función proposicional p(x) cuantificada universalmente en el primer caso, y existencialmente en el segundo.

Ejemplo: Una función proposicional cuantificada universalmente es V si y sólo si son V todas las proposiciones particulares asociadas a aquella. Para asegurar la verdad de una proposición cuantificada universalmente es suficiente que sea verdadera alguna de las proposiciones asociadas a la función proposicional.

Un problema de interés es la negación de funciones proposicionales cuantificadas. Por ejemplo, La negación de "Todos los enteros son impares" es "Existen enteros que no son impares"   y en símbolos: $ x / ~ p(x)

Entonces, para negar una función proposicional cuantificada universalmente se cambia el cuantificador en existencial, y se niega la función proposicional.

Ejemplo:  Supongamos la proposición: Todos los alumnos de mi colegio son aplicados

La vamos a escribir en lenguaje simbólico, negarla y retraducir la negación al lenguaje ordinario.

Nos damos cuenta pronto que se trata de la implicación de dos funciones proposicionales:

p(x) : es alumno de mi colegio

q(x) : es aplicado

Tenemos:  " x : p(x) Þ q(x)

Teniendo en cuenta la forma de negar una función proposicional cuantificada universalmente y una implicación resulta:

$ x / p(x) Ù ~ q(x)

Y traduciendo al lenguaje ordinario resulta: Existen alumnos de mi colegio que no son aplicados


  © copyright 2002

Soko.com.ar es un sitio dedicado a difundir educación