Enzimas

Sustancias orgánicas especializadas compuestas por polímeros de aminoácidos (proteínas), que actúan como catalizadores en el metabolismo de los seres vivos. Con su acción, regulan la velocidad de muchas reacciones químicas implicadas en este proceso. El nombre de enzima, que fue propuesto en 1867 por el fisiólogo alemán Wilhelm Kühne (1837-1900), deriva de la frase griega en zymç, que significa "en fermento".

Efecto de la temperatura sobre la velocidad de reacción: Energía de activación

Las enzimas controlan la velocidad de una reacción química y estas son generalmente sensibles a la temperatura. En el caso de las reacciones biomoleculares, un aumento de 10º C incrementa su velocidad entre 1,5 y 5 veces. Para explicar este hecho se postuló que al acrecentar la temperatura aumenta la fracción de moléculas capaces de tener una energía suficiente para alcanzar un "estado activado" que luego se transforme en producto de la reacción por formación o ruptura de enlaces químicos. Se admite que las únicas moléculas que reaccionan son aquellas que al chocar llevan consigo una energía mayor que un cierto valor mínimo. A este valor de energía necesaria se lo denomina energía de activación y es un factor de suma importancia para determinar la magnitud de la velocidad de reacción. Aunque un aumento de la temperatura puede acelerar una reacción, las enzimas son inestables cuando se calientan.

Catalizadores: Para que una reacción química tenga lugar se debe superar el valor de la energía de activación. Una vez vencida esa barrera el sistema evoluciona de forma tal que llegará al estado final de la reacción. La velocidad de reacción podría incrementarse de dos maneras: aumentando la concentración del "complejo activado" o eventualmente disminuyendo la energía de activación. Este último mecanismo es el que se pone de manifiesto cuando se emplea determinadas sustancias llamadas catalizadores. Estas sustancias aceleran las reacciones químicas disminuyendo la energía libre de activación, se combinan con los reactivos para producir un estrato de transición de menor energía que el estado de transición de la reacción no catalizada. Cuando los productos de la reacción se forman, se regenera el catalizador al estado libre.

 Catalizadores biológicos - Enzimas: Las reacciones químicas en sistemas biológicos raramente ocurren en ausencia de un catalizador. Estos catalizadores se denominan enzimas y son en su totalidad moléculas de naturaleza proteica (aunque ha habido estudios acerca de enzimas de naturaleza glucosídica). Es razonable pensar en la necesidad que tienen los seres vivos de poseer estos catalizadores, ya que las funciones vitales de cualquier célula serían imposibles de mantener si las reacciones que ocurren en ella fueran extremadamente lentas.

Además de incrementar la velocidad las enzimas exhiben una elevada especificidad y en algunos casos pueden ser reguladas por diferentes metabolitos, aumentando y otras veces disminuyendo, de acuerdo a las necesidades del momento, su actividad.

Todas estas propiedades pueden ser cumplidas por moléculas altamente complejas, que al ser moléculas orgánicas (macromoléculas) comparten características con las proteínas no enzimáticas y difieren de los catalizadores inorgánicos:

a) Son termolábiles y su actividad depende en ciertos casos del pH del medio.

b) El reconocimiento de la enzima con el reactivo a procesar (denominado sustrato) es altamente específico.

c) Tienen gran eficiencia, es decir, transforman un gran número de moléculas de sustrato por unidad de tiempo.

d) Están sujetas a una gran variedad de controles celulares, genéticos y alostéricos .

Como todos los catalizadores las enzimas aceleran notablemente la velocidad de una reacción química y cumplen con las siguientes características:

1) Son efectivas en pequeñas cantidades

2) No sufren modificaciones químicas irreversibles durante la catálisis. Es decir que luego de la reacción enzimática, las moléculas de enzimas que reaccionaron son indistinguibles de las que no lo han hecho, (la estructura de la molécula se mantiene, al principio y final de la reacción, exactamente igual).

3) No afectan la posición de equilibrio de la reacción que catalizan. El estado inicial y final de la reacción es el mismo, solo que se llega al equilibrio mucho más rápidamente.

Como norma, las enzimas no atacan a las células vivas. Sin embargo, tan pronto muere una célula, ésta es digerida por enzimas que rompen sus proteínas. La resistencia de las células vivas se debe a la incapacidad de las enzimas de atravesar la membrana celular mientras las células tienen vida. Cuando la célula muere, su membrana se hace permeable y la enzima puede penetrar en la célula y destruir las proteínas en su interior. Algunas células contienen también enzimas inhibidoras, denominadas antienzimas, que evitan la acción de una enzima sobre un sustrato.

Nomenclatura y clasificación

Una forma general de denominar a las enzimas es añadir el sufijo "asa" al nombre del sustrato. Así, la ureasa es la enzima que cataliza la hidrólisis de la urea formando amoníaco y dióxido de carbono. Sin embargo con el descubrimiento de nuevas enzimas esta nomenclatura resulta a veces confusa. Actualmente se ha adoptado ciertas recomendaciones de la Internacional Enzime Comission, que pretende sistemetizar la nomenclatura y clasificación de las diferentes enzimas conocidas. Este sistema divide a las enzimas en seis clases que a su vez pueden tener diferentes subclases.

Cofactores

Algunas enzimas dependen para su actividad catalítica además de la estructura proteica, de otras moléculas de naturaleza no proteica. Estas estructuras reciben el nombre de cofactores. Estos son resistentes al calor mientras que las proteínas generalmente no lo son.

El complejo enzima – cofactor recibe el nombre de holoenzima. A la fracción proteica aislada del cofactor que es inactiva se la denomina apoenzima. Los cofactorespueden ser simpemente iones metálicos o en algunos casos moléculas orgánicas complejas. Estas últimas el nombre de coenzimas.

Holoenzima = Apoenzima + Coenzima

En ciertos casos las coenzimas están estrechamente unidas a la molécula de la enzima y reciben el nombre del grupo prostético. Un ejemplo clásico lo constituye el grupo hemo del citocromo C, unido covalentemente a la proteína. Entre los cofactores que requieren las enzimas para su funcionamiento están las coenzimas: NADPH + H (nicotinamida adenina dinucleótido fosfato reducido), NAD (nicotinamida adenina dinucleotido), FAD (flavina adenina dinucleótido), piridoxal, biotina, tiamina, ácido tetra hidrofólico , cobalamina.

Centro activo de una enzima

Ya se había mencionado que la porción de la molécula en la enzima que se una al o a los sustratos es una zona relativamente pequeña de la misma. Esta zona , responsable de la actividad catalítica, que favorece la orientación de los grupos químicos (que reaccionan para dar los productos de la reacción) recibe el nombre de centro activo.

Los grupos responsables de la actividad catalítica propiamente dicho se los denomina sitios catalíticos. En algunos casos esos grupos pueden corresponder a los grupos prostéticos de los cuales ya se ha hablado.

Factores que influyen en la velocidad de las reacciones enzimáticas

Temperatura: Un aumento en la temperatura provoca un aumento de la velocidad de reacción hasta cierta temperatura óptima, ya que después de aproximadamente 450 C se comienza a producir la desnaturalización térmica. Las enzimas de muchos mamíferos tienen una temperatura óptima de 370 C, por encima de esa temperatura comienzan a inactivarse y se destruyen Sin embargo existen especies de bacterias y algas que habitan en fuentes de aguas termales y en el otro extremo ciertas bacterias árticas tienen temperaturas óptimas cercanas a 00 C.

Efecto Del pH Sobre La Actividad Enzimática: El pH no afecta la actividad enzimática directamente sino que modifica la concentración de protones. Los protones además de alterar la estructura de la enzima y el substrato, pueden participar también en la reacción como substrato o producto. En esos casos, la concentración de protones afecta directamente la velocidad de la reacción.

Cualquier cambio brusco de pH, sabiendo que las enzimas son proteínas, puede alterar el carácter iónico de los grupos amino y carboxilo en la superficie proteica, afectando así las propiedades catalíticas de una enzima. A pH alto o bajo se puede producir la desnaturalización de la enzima y en consecuencia su inactivación .

Enzimas (pH óptimo): Pepsina (1,5) ; Tripsina (7,7); Catalasa (7,6); Arginasa (9,7); Ribonucleasa (7,8)

Inhibición Enzimática

La actividad enzimática puede ser disminuida o eliminada por la acción de ciertas sustancias a las cuales se les conoce con el nombre de inhibidores enzimáticos. Las distintas formas de interacción se traducen en varios tipos de inhibición perfectamente diferenciables experimentalmente. Los dos tipos más comunes son la competitiva y la no competitiva

Competitiva: el inhibidor compite con el substrato por la unión con el centro activo de la enzima. Un ejemplo clásico lo constituye la inhibición del malonato sobre la enzima succinato deshidrogenasa quecataliza la eliminación de dos átomos de hidrógeno de los átomos de carbono metilénico del succinato. 

No competitiva: el inhibidor forma un enlace covalente con las enzimas cerca del centro activo sin modificarla irreversiblemente. Un ejemplo son los gases nerviosos, como el fluorofosfato de di isopropilo (DFP) que forma un complejo con la enzima acetilcolinesterasa. Los animales envenenados con este gas quedan paralizados, debido a la imposibilidad de transmitir adecuadamente los impulsos nerviosos.